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ABSTRACT
Eastern subterranean termite, Reticulitermes flavipes (Kollar), workers were exposed for 7 days to
one of five chitin synthesis inhibitors (CSIs): diflubenzuron, hexaflumuron, lufenuron,
noviflumuron, and novaluron in commercially available bait matrices. Following a 7 day
exposure period, termite donors (D) were combined with na€ıve (not exposed) termite
recipients (R) at five D:R ratios (20:0, 15:5, 10:10, 5:15, and 1:19) and mortality determined daily
for up to 68 days. Lethal time and percent mortality data suggest efficient transfer at all D:R
ratios for all CSIs tested, except diflubenzuron at 1:19. Despite the data indicating transfer of
lufenuron in bioassay, this material may not be effective in field use based on behavioral
observations that include limited movement by donors. We also report frequency of visible
evidence of CSI intoxication, including the previously described “jackknife” pose and an
additional physical deformity, we term “curled-body”. The implications these data and
observations have for laboratory evaluation and field population management using
commercial termite baiting systems is discussed.
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Introduction

The history of managing social insect pests has long
included the use a toxic food matrix – termed a bait –
with the intent of using the victim’s social behaviors to
assist in the control effort (Kofoid 1934; Vinson 1986;
Williams et al. 2001; Evans & Iqbal 2014). Termites are
social insects of world-wide importance in wildlands
as integral members of processes involving the degra-
dation and recycling of carbon whilst in agriculture,
urban and human-built habitats are often serious eco-
nomic pests (Su & Scheffrahn 2000; Jouquet et al.
2001; Rouland-Lefevre 2011; Evans et al. 2013). The
commercialization of termite baits has demonstrated
the utility of the baiting paradigm against the subterra-
nean termites (Rhinotermitidae), yet there are
concerns related to the efficacy of termite baiting,
including the end-result of colony elimination, mode
of transfer, and speed of action (Evans & Iqbal 2014).
There is, however, little doubt that the most successful
termite bait toxins involve chitin synthesis inhibitors
(CSIs) (Evans & Iqbal 2014).

Chitin, an amino-polysaccharide (poly-b-(1, 4)-N-
acetyl-D-glucosamine), is a major structural compo-
nent of insect cuticle synthesized in ectodermal cells
of the trachea, salivary glands, epidermis, foregut,
and hindgut (Anderson 1979; Cohen 1987). Benzoyl-
phenyl urea insecticides are considered CSIs that
cause death by interfering with cuticle sclerotization

during molting (Cohen 1987). CSIs display arthro-
pod specificity and delayed toxicity and have been
examined as an alternative to neurotoxin insecticides
(Verloop & Ferrell 1977; Retnakaran & Wright 1987;
El Saidy et al. 1989; Su & Scheffrahn 1991; Medina
et al. 2003). Slow acting toxicants have limited utility
in crop protection but provide advantages when
used in a pesticidal baiting program against social
insects (Williams & Lofgren 1981; Su et al. 1982;
Reierson 1995).

Baits containing CSIs were commercialized for ter-
mite control in the late 1990s because these active
ingredients (AIs) demonstrated ready consumption
within a range of concentrations, and delayed toxicity
(Su et al. 1982; Su et al. 1987; French 1994; Su 2003;
van den Meiracker et al. 2002; Evans 2010). The CSI
AIs used in USEPA registered termite baiting systems
include diflubenzuron 0.25% AI (Whitmire Micro-
Gen, St. Louis, MO), hexaflumuron 0.50% (Dow Agro-
Sciences, Indianapolis, IN), noviflumuron 0.50%
(Dow AgroSciences, Indianapolis, IN), lufenuron
0.15% (Syngenta Corporation, Greensboro, NC), and
novaluron 0.5% (BASF Corporation, Reaserch Triangle
Park, NC). These CSIs are analogs differing in halogen
substitution or side-chain modification on the phenyl
ring and it is assumed that they have the same mode of
action, impact on termite behavior, transfer efficiency,
and dose response (Figure 1).
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We used laboratory bioassays to record mortality
associated with each of five CSI-containing termiticidal
baits using the eastern subterranean termite, Reticuli-
termes flavipes (Kollar). Efficiency of CSI transfer was
measured using five donor-to-recipient (D:R) ratios
along with notation of cannibalism and other physical
deformities. The null hypothesis was that all CSI AIs
would provide the same profile of mortality and be
equally efficacious in transfer between nestmates.

Material and methods

Insects and chemicals

Five populations of R. flavipes (Kollar) were collected
from field sites, separated by at least 100 m, from White-
hall Forest, Clarke County, Georgia. Termites were iden-
tified to species using published keys to the soldier caste
(Scheffrahn and Su 1994). Termites were collected using
moistened corrugated cardboard and placed into a plas-
tic container (26.99 £ 19.37 £ 9.52 cm) with weathered
pine wood slats (approx. 12.5 £ 2.54 £ 0.2 cm) in com-
plete darkness inside an environmental chamber (27 �C,
�90% relative humidity (RH)) until use in bioassay
(Forschler and Townsend 1996). Termites used as
donors were obtained by placing 300 workers (4th instar
or older) in a plastic Petri dish (100 £ 25 mm diameter)
with 20 grams of sand moistened with 3.2 ml of distilled
water for 7 days with a known weight (6.5 § 1.5 g) of
the appropriate commercially available bait matrix
(proprietary a-cellulose formulations) containing one
of the following CSI treatments: no CSI (control),

diflubenzuron 0.25% (Whitmire Micro-Gen, St. Louis,
MO), hexaflumuron 0.50% (Dow AgroSciences, Indian-
apolis, IN), noviflumuron 0.50% (Dow AgroSciences,
Indianapolis, IN), and 0.5% novaluron (BASF Corpora-
tion, Research Triangle Park, NC). The lufenuron (Syn-
genta Corporation, Greensboro, NC) treatments were
presented on 2 § 0.2 g corrugated cardboard at 0.15%
AI as this is the bait matrix of that commercial product.

Toxicant transfer

Donor termites were placed in a plastic Petri dish
(65 £ 15 mm diameter) containing filter paper (What-
man #1, 55 mm diameter) moistened with distilled
water. Nestmate workers from the same population
(recipient termites) were added to provide various D:R
ratios for a total of 20 workers per Petri dish. Recipient
termites (R) were treated as described for the donor
termites (D) except R were exposed to non-treated
a-cellulose tablets and marked with DecoColor Paint
Marker (Uchida American DecoColor Paint marker)
to differentiate them from D. Several D:R ratios were
tested: 20:0, 15:5, 10:10, 5:15, and 1:19. Each D:R was
replicated at least 5 times from each termite
population.

Data collection

All dead and moribund termites were removed daily
and the condition (whole or missing body parts) of
each cadaver was noted. We set a limit of <20% mor-
tality in the corresponding control as the benchmark

Figure 1. Chemical structure of benzoylphenyl urea insect growth regulators. (A) Diflubenzuron. (B) Hexaflumuron. (C) Lufenuron.
(D) Noviflumuron. (E) Novaluron.
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for including a replicate in the data analysis. Informa-
tion on the presence of termites found in the “jack-
knife” position (Su & Scheffrahn 1993) characterized
by the head and last abdominal segments being in close
proximity because the thorax and first abdominal seg-
ments were raised (Figure 2(A)). Termites in the jack-
knife pose also displayed visibly wrinkled cuticle near
the tip of the abdomen (Figure 2(A)). We also
observed termites that arched in the opposite direction
that we term the “body curl” position (Figure 2(B)).
The body curl was not characterized by any deformity
of the cuticle. The body curl position was observed
only in moribund termites because in death these ter-
mites “relaxed” into a normal straight position.

Statistical analysis

Mortality data were adjusted using Abbott’s formula
(Abbot 1925) and compared using SAS-JMP
(version 7.0) statistical software (2007 SAS Institute,
Inc., Cary, NC) by treatment, ratio, and time.
Termite mortality was evaluated with general linear
model (GLM) analysis of variance and Tukey–
Kramer honestly significant difference test for mul-
tiple mean comparisons (a D 0.05). Mortality data
were also subjected to probit regression to obtain
lethal time (LT) estimates. If the confidence interval
(CI) (a D 0.05) of the LT values did not overlap,
they were considered significantly different.

Results

A comparison of LT estimate differences based on CI
overlap provided similar LT90 values for all CSIs tested
with the first two D:Rs (20:0 and 15:5) (Table 1). The
10:10 D:R indicated no difference between the LT90

estimates for the novaluron, hexaflumuron, noviflu-
muron, and lufenuron treatments, that lufenuron and
diflubenzuron were not different but diflubenzuron
was different than the other three (Table 1). However,
diflubenzuron clearly separates statistically from all the
other CSIs at the 5:15 and 1:19 D:Rs with longer LT90

estimates (Table 1). Lufenuron at the 1:19 D:R also sta-
tistically separates from the remaining chemistries
(Table 1).

The LT50 data indicate a similar trend when com-
paring CSI treatments (Table 1). The LT50 data exam-
ined within treatments implies that noviflumuron is
transferred most efficiently as signified by the lack of
statistical difference across all D:R ratios. The differ-
ence in LT50 values for the hexaflumuron and nova-
luron D:R comparisons were statistically the same
despite ranging between 4 and 5 days (Table 1). The
lufenuron LT50 data display a clear statistical trend
toward less transfer as the number of donors decrease
as well as diflubenzuron – especially at the two lower
D:R ratios (Table 1).

The percent mortality data, by treatment, from the
20:0 ratio provided the benchmark for efficacy assum-
ing all exposed termites consumed the respective toxi-
cant during the 7 days they were confined with the
treated matrix (Figure 3(A)). All the CSI treatments at
the 20:0 D:R and 27 �C, provided sufficient mortality
(>97%) by day 68 to conclude the bioassay (Figure 3
(A); F D 589.60; df D 11; p < 0.0001). The mortality
data in the remaining D:Rs (F D 272.62, F D 221.88,
F D 76.79, F D 73.82, respectively) demonstrate the
effective transfer of CSIs in this confined bioassay sys-
tem (Figure 3(B)–3(E); df D 11; p < 0.0001). Hexaflu-
muron, noviflumuron, and novaluron provided
equivalent mortality at days 42 (df D 20; F D 35.65)
and 68 (df D 15; F D 29.48) (Figure 3(A)–3(E);
p < 0.0001). Lufenuron provided higher mortality on
days 7 (F D 5.41) and 21 (F D 6.02) in the 20:0 D:R
treatment indicating a quicker affect compared to the
other CSIs that was not realized in the lower D:Rs
(Figure 3; df D 11; p < 0.0001). Lufenuron mortality
was statistically similar to the three previously men-
tioned CSIs at days 21 and 42 for all D:Rs except 1:19
(df D 11; F D 73.82; p < 0.0001) indicating a reduction
in transfer at low donor ratios (Figure 3(E)). The diflu-
benzuron treatment produced statistically lower mor-
tality by day 68 in the 10:10 and 5:10 D:Rs (df D 7;
F D 20.21; p < 0.0001) and at day 42 in the three
lowest D:Rs – 10:10, 5:10, and 1:19 (df D 9; F D 12.67;
p < 0.0001), indicating reduced transfer compared to
the other CSIs (Figure 3).

Figure 2. Physical deformities observed in termites exposed to
CSIs. (A) Jackknife pose. (B) Curled body.
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Observations from cadaver removal

D:R ratio was not an important variable in the observed
condition/treatment of the dead (df D 47, 308; F D
1.08; p D 0.3603) and, therefore, data were pooled by
CSI treatments. The daily procedure of removing dead
termites from bioassay showed that the CSI treatments
had a significant effect on observed acts of cannibalism,
with most of the cadavers being intact (65%–75%;
N D 60) (Figure 4). The number of dead removed from
the controls, by contrast, provided a much lower per-
centage of intact cadavers (24 § 32%; N D 60/CSI;
df D 5, 47; F D 52.67; p < 0.0001) (Figure 4.). Body
parts most likely to be missing in the control included
the abdomen (13 § 18%; F D 13.58), head (18 § 15%;
F D 18.03), or thorax (9 § 10%; F D 14.53) and were
at least two times greater than that seen in CSI treat-
ments (Figure 4; df D 5, 47; p < 0.0001). Controls also
were more likely to have legs (11 § 11%; F D 5.14; p D
0.0002) and antennae (17 § 15%; F D 6.19;
p < 0.0001) missing, compared to all CSIs treatments
that averaged 6 § 5% and 9 § 7%, respectively
(Figure 4; df D 5, 47). Burial of cadavers was (3 § 6%;
N D 360) uncommon and did not differ between treat-
ments (Figure 4; df D 5, 47; F D 1.30; p D 0.1004). The
likelihood of individuals being unaccounted for and
presumed completely cannibalized were rare averaging
3% (N D 360) or less over 68 days (Figure 4; df D 5,
47; F D 2.78; p D 0.0179) for both controls and
treatments.

We observed two physical deformities displayed by
moribund termites exposed to CSIs termed “jackknife”
(Su & Scheffrahn 1993) and “body curl” (Figure 2).
Within treatments, the occurrence of either jackknife
(F D 1.0832; p D 0.3603) or body curl (F D 1.3732;
p D 0.2559) was not different between D:R ratios
(Figure 5). The jackknife pose was seen in termites
exposed to all CSIs, with the exception of novaluron,
and was most common in the diflubenzuron treatment
(Figure 5; F D 17.7874; p < 0.0001). Diflubenzuron
provided comparable frequencies of both jackknife and
body curl 38 § 15% and 39 § 18%, respectively (F D
0.0181; p D 0.8936). All other CSIs provided a higher
frequency of body curl (>60%) with hexaflumuron
providing the highest incident (Figure 5; F D 60.1281;
p < 0.0001).

Discussion

Maintaining healthy termites in bioassay is essential
when comparing experimental results (Lenz & Wil-
liams 1980) and we established a threshold of <19%
mortality in the control group before including a repli-
cate in our data analysis. Maintaining termites in small
plastic containers for months is a difficult process as
indicated by publications, such as Vahabzadeh et al.
(2007) that reported 70% control mortality at day 45.
Four subterranean termite/CSI studies published had
<20% mortality in the controls (Karr et al. 2004;

Table 1. LT estimates (LT50 and LT90) (§95% CI) by treatment, CSIs and D:R ratios along with corresponding
regression slopes for Reticulitermes flavipes.
Trmta LT50 (95% CI) c,d LT90 (95% CI) c,d Slope § SE

CON D:Rb 253 (218 ¡ 304) 456 (390 ¡ 552) 0.20 § 0.02

NVL 20:00 24 (22 ¡ 25) A 42 (40 ¡ 45) A 2.16 § 0.13
15:05 24 (22 ¡ 25) A 43 (40 ¡ 48) A 2.04 § 0.17
10:10 23 (22 ¡ 24) A 42 (40 ¡ 44) A 2.11 § 0.10
5:15 27 (26 ¡ 29) B 46 (43 ¡ 50) A 2.13 § 0.13
1:19 25 (24 ¡ 27) AB 44 (41 ¡ 46) A 2.21 § 0.12

DFB 20:00 24 (22 ¡ 26) A 43 (40 ¡ 46) A 2.13 § 0.16
15:05 27 (25 ¡ 28) A 45 (42 ¡ 48) A 2.20 § 0.12
10:10 28 (27 ¡ 29) A 48 (46 ¡ 50) A 1.99 § 0.08
5:15 54 (47 ¡ 68) B 97 (80 ¡ 129) B 0.94 § 0.15
1:19 67 (59 ¡ 78) B 121 (104 ¡ 148) B 0.73 § 0.08

HEX 20:00 23 (22 ¡ 24) A 40 (39 ¡ 42) A 2.28 § 0.11
15:05 22 (21 ¡ 23) A 39 (38 ¡ 41) A 2.33 § 0.10
10:10 26 (25 ¡ 27) B 43 (41 ¡ 45) AB 2.31 § 0.09
5:15 26 (25 ¡ 27) B 43 (41 ¡ 46) AB 2.29 § 0.11
1:19 27 (26 ¡ 28) B 45 (43 ¡ 47) B 2.28 § 0.08

NFM 20:00 25 (23 ¡ 27) A 43 (40 ¡ 46) A 2.23 § 0.15
15:05 25 (23 ¡ 27) A 44 (41 ¡ 48) A 2.07 § 0.14
10:10 26 (25 ¡ 27) A 44 (42 ¡ 45) A 2.25 § 0.08
5:15 29 (27 ¡ 31) A 48 (44 ¡ 53) A 2.09 § 0.16
1:19 29 (27 ¡ 30) A 47 (44 ¡ 50) A 2.18 § 0.12

LUF 20:00 17 (13 ¡ 19) A 39 (36 ¡ 44) A 1.76 § 0.19
15:05 21 (19 ¡ 23) A 39 (37 ¡ 42) A 2.18 § 0.16
10:10 25 (24 ¡ 26) B 44 (42 ¡ 47) A 2.10 § 0.10
5:15 26 (24 ¡ 27) B 44 (41 ¡ 47) A 2.21 § 0.14
1:19 32 (31 ¡ 34) C 53 (50 ¡ 57) B 1.91 § 0.11

Note: aTrmtD treatments were exposed to termites for 7 days and include: COND control (a cellulose), NVlD novaluron, DFBD
diflubenzuron, HEX D hexaflumuron, NFM D noviflumuron, LUFD lufenuron. Mortality was counted daily for 42 days after initial
exposure.
bD:RD donor-to-recipient ratio.
cLT D lethal time by day for 50% or 90% mortality.
dCI D confidence intervals followed by the same upper case letter, within a treatment, indicate that CI overlap and LT values for
those D:R ratios are considered similar.
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King et al. 2005; van den Meiracker et al. 2005; Gautam
& Henderson 2014). Our findings (Figure 3(A)) corre-
spond well with van den Meiracker et al. (2005) (25 �C
and 30 �C; continuous exposure), King et al. (2005)
(21 �C; 14 day exposure), and Karr et al. (2004) (26 �C;
7 day exposure) that reported at least 80% mortality in
their treatments, while Gautam and Henderson (2014)
(27 �C; continuous exposure) had lower mortality at
day 42 for two of three CSIs they examined.

Exposure to benzolurea CSIs results in a variety of
symptoms in insects, including disruption of molting
and egg hatch (Merzendorfer 2013). Factors that can
influence frequency of molting and, therefore, time to

CSI mortality would include temperature. Subterra-
nean termite workers can take 50–125 days between
molts with temperatures ranging from 30 �C to 18 �C
(Weesner 1956; Buchli 1958; van den Meiracker et al.
2002; Swoboda & Miller 2005; Raina et al. 2008).
When investigating the impact of a slow acting com-
pound, it is essential to conduct a study at a tempera-
ture that will permit observation of mortality in a
timely manner (van den Meiracker et al. 2002). Despite
the fact that the annual soil temperature of the Georgia
Piedmont in the southeastern USA average 22 �C at a
depth of 20 cm (GeorgiaWeather.net 2008), we chose,
for comparative analysis, a higher temperature (27 �C)

Figure 3. Termite mortality over time (7, 21, 42, and 68 day) exposed to CSIs by D:R ratios as follows: (A) 20:0, (B) 15:5, (C) 10:10, (D)
5:15, and (E) 1:19.
Note: CSI treatments included C D control, D D diflubenzuron, H D hexaflumuron, N D noviflumuron, E D novaluron, and L D lufenuron. Ratio of donors
exposed to CSI to recipients.
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in order to observe mortality in a time frame that
would allow for recording both lethal affects and
appropriate control survivorship. The time to mortal-
ity, therefore, in field use of these baits can be expected
to be longer.

CSIs impact not only the molting process, but also
physiology (peritrophic matrix, fat body, trachea,
oocytes, and midgut) and biochemical (DNA synthesis)
processes (Retnakaran et al. 1985; Zimmermann &
Peters 1987; Nakagawa & Matsumura 1994; Morales-
Ramos et al. 2006; Merzendorfer 2013). We observed
termites that displayed the jackknife pose, a condition
attributed to aborted molting (Su & Scheffrahn 1993;
Getty et al. 2000). The jackknife pose was recorded in
all CSI treatments at low frequency (�5%) and were

comparable to the findings reported by Su and Schef-
frahn (1993, 1996), although the jackknife pose was
common (35%) in our diflubenzuron replicates
(Figure 5). Most of the dead or moribund termites in
our test did not display obvious signs of “molting inhi-
bition”, yet we recorded what we termed the curled-
body pose (Figure 5). This display in a moribund state
has not been previously described and we cannot
account for a physiological explanation. An explanation
for the curled-body posture, prior to death, should be
pursued in future research as it may indicate a cause of
mortality separate from the molting process.

Bait used for elimination of subterranean termite
colonies can be efficacious under one of two scenarios.
The first is that every termite in a targeted population

Figure 4. Evidence of cannibalism observed during daily post-exposure examination of Petri dishes combining all D:R ratios over
the 68-day experimental period. Treatments included: C D control, D D diflubenzuron, H D hexaflumuron, N D noviflumuron, E D
novaluron, and L D lufenuron. Observation of the dead and signs of cannibalistic acts (body part missing): W D whole body intact;
D D abdomen; H D head; T D thorax; L D legs; A D antennae; R D body buried; and M D whole body missing. (colour version
available online)

Figure 5. Frequency of dead or moribund termites exhibiting physical deformities following exposure to CSIs over a 68-day period.
CSI exposures include nonactive C D control, D D diflubenzuron, H D hexaflumuron, L D lufenuron, N D noviflumuron, and
E D experiment CSI. Physical deformities were jackknife pose and body curl. Different letters indicate significant differences
(p < 0.05) between bait treatments because these deformities were not observed in the controls. (colour version available online)
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visits the toxicant-laden bait and feeds. This “all-must-
visit” scheme could be successful if termites moved
between feeding locations on a “regular” (perhaps
daily) basis. The second scenario requires movement
of the AI by bait-fed termites to nestmates that do not
contact treated bait. There are no field data to collabo-
rate either of the aforementioned scenarios and most
of the literature assumes the second scheme (French
1991; Evans & Iqbal 2014). The movement scenario
depends on distribution of AI to termites that never
feed on the toxicant-laden bait and by extension the
most efficacious bait would be one that is, somehow,
relocated from the bait station.

Termiticidal agents introduced into a termite popu-
lation can be distributed through eusocial behaviors,
such as grooming, food sharing, and cannibalism
(Randall & Doody 1934; Beard 1974; Su & Scheffrahn
1996; Peppuy et al. 1998; Ibrahim et al. 2003; Hu 2005;
Haagsma & Rust 2005). Movement of a food-borne AI
within a subterranean termite population is a matter of
conjecture although recent observational data do pro-
vide some insights. Food sharing, that is traditionally
lumped under the term “trophallaxis” (Sleigh 2002),
involves two–five different mechanisms of transfer
(Whitman & Forschler 2007). Stomodeal and procto-
deal exchanges are the most commonly considered
food sharing options employed in interpreting termite
bait-toxin transfer data (Sheets et al. 2000; Karr et al.
2004; Haagsma & Rust 2005; King et al. 2005). Stomo-
deal trophallaxis (or autofeeding stomodeal) is a recipi-
ent driven process involving donors that are chewing
something that could have been obtained by one of the
three ways: from a recently completed stomodeal or
proctodeal exchange and food self-procured by the
donor (autofeeding cellulose) (Whitman & Forschler
2007). The model of recipient-driven exchange obvi-
ates stomodeal transfer of bait toxins because termites
have not been observed chewing food as they move
from location to location. According to Whitman
(2007), exchange of regurgitated food is a rare event.
We, therefore, propose the most likely route of CSI
trophallaxic transfer is a proctodeal donation some dis-
tance from the toxicant-bait feeding site. The meal
taken at a toxin-containing bait station must be pro-
vided, after movement away from the station, within
the timeframe of “clearance” or movement of food
through the alimentary tract. Clearance or “half-life”
has been described using radiolabeled CSIs as the time
an AI remains in the termite body (Sheets et al. 2000).
Most of the literature report that CSI "transfer" (and
we are assuming the proctodeal route as determined
by the experimental design of feeding donors in one
arena and placing them with recipients in a separate
arena) in termites peaks between 8 hours and 2 days
(Sheets et al. 2000; Karr et al. 2004; Haagsma & Rust
2005; Spomer & Kamble 2006). That 48-hour time
frame for movement of a food bolus through the

alimentary tract of a subterranean termite matches
previous observational data using stained a-cellulose
(Forschler 1996) in addition to experiments of radiola-
beled food transfer (Su�arez & Thorne 2000).

If we exclude stomodeal trophallaxis, there remains
other ways for a termite to move the toxic from a bait-
ing site. Delivery can be accomplished by dermal con-
tact and by grooming if the AI is processed to the
exterior of the cuticle or the cuticle is contaminated by
contact with the bait or tainted feces. Grooming has
been described as the most consistent behavior
observed in worker–worker interactions in various
studies (Iwata et al. 1989; Rosengaus & Traniello 1993;
Maistrello & Sbrenna 1996; Whitman 2006). If a bait-
borne CSI is excreted on the cuticle, it could very likely
be efficiently transferred as demonstrated by the trap-
treat-and-release work of Myles (1996). The cuticle/
grooming route of CSI transfer should be examined in
more detail, although Haagsma and Rust (2005) and
Sheets et al. (2000) provide data indicating an insuffi-
cient amount of radiolabeled CSI is provided to donors
by contact with CSI-exposed termites or feces. An
additional route, not tested in our experimental design,
would involve movement of the bait matrix as a con-
struction material by termites that visit a bait station.
It has been noted that termites will use food (including
bait matrices) as a substrate for tunnel/gallery con-
struction (Forschler 1996; Duncan 1997; Whitman &
Forschler 2007). The use of a toxic bait in gallery con-
struction/maintenance is a topic beyond the scope of
this work but it must be noted as a potential mecha-
nism for “transfer” of a termite bait toxicant beyond
the confines of a bait station.

Behavioral responses must also be considered when
evaluating the efficacy of any termite bait (Su et al.
1982; Haverty et al. 1989; Forschler & Jenkins 2000).
Termites that consume toxicant-laced food must be eli-
cited for a food donation a process that could be com-
promised by donors that display signs of intoxication
and are subsequently avoided. In addition, if termites
are unable to move from the CSI feeding site, transfer is
negated. The mortality results from our bioassay
(Table 1) and the work of Lewis and Power (2006),
Vahabzadeh et al. (2007), and Gautam and Henderson
(2014) indicates that feeding on lufenuron-treated card-
board bait provides transfer comparable to other CSIs
in the confines of a laboratory arena. Yet, we observed
lufenuron donors displayed a characteristic stance with
antennae held straight forward in a “V” orientation
when viewed from above. This unusual pose may sig-
nify a behaviorally compromised termite because these
same donors did not respond by increased movement,
as in the controls or other CSI treatments we tested,
when lifting the Petri dish lid. We would, therefore,
posit that transfer of lufenuron in the field would be
compromised because movement of potential donors is
reduced. In addition, our data show termites exposed to
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CSIs were less likely to be cannibalized (Figure 4).
Haagsma and Rust (2005) found transfer of hexaflu-
muron by cannibalism was efficient only in groups
containing donors that were starved, however; further
research is needed to elucidate the impact of cannibal-
ism on toxicant transfer. Whitman and Forschler
(2007) suggested that observation of the jackknife pose
in bioassay is indicative of recognition of unhealthy
dead and our data support this contention because the
jackknife and body curl was not observed in the con-
trols and cannibalism was lower in the CSI treatments
(Figure 4). Observations of nest mate involvement in
the termite molting process have been observed yet the
role in bait toxicant transfer that consumption, by nest
mate helpers, of CSI-contaminated exuvia has not been
investigated (Traniello et al. 2002; Whitman & For-
schler 2007; Xing et al. 2013).

In conclusion, despite the fact that the dose required
to achieve mortality has not been determined for any
CSI (Sheets 2000), the commercial bait formulations
we tested transferred in an efficient manner within the
confines of a Petri dish and suggests a low (ng AI per
termite) dose/mortality relationship. Efficiency of bait
toxicant transfer is herein described as >90% mortality
in 19 not-exposed nestmates confined with one termite
that had access to a CSI bait for 7 days. The actual
mode(s) of transfer remains unresolved but sufficient
evidence is provided to suggest a major route is procto-
deal donation. The reduced efficiency of diflubenzuron
at the lowest D:Rs tested may be a result of the lower
concentration of that CSI bait (0.25%) compared to
the three baits with a 0.5% concentration. The lowest
concentration of CSI in the baits we tested was lufe-
nuron (0.15%) and it provided equivalent mortality,
using the LT90 metric (Table 1), with all but the lowest
D:R (1:19), yet the behavioral observations suggest that
this CSI will not be effectively transferred under field
conditions. This is supported by observations of the
compromised movement of lufenuron donors and the
assumption that movement away from the bait site is a
critical component of termite bait field efficacy.
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