ECOLOGY AND POPULATION BIOLOGY

A Test for Interactions Between Varroa destructor (Acari: Varroidae) and Aethina tumida (Coleoptera: Nitidulidae) in Colonies of Honey Bees (Hymenoptera: Apidae)

KEITH S. DELAPLANE,1,2 JAMES D. ELLIS,1,3 AND W. MICHAEL HOOD4

ABSTRACT Field surveys indicate that declining colonies of honey bees, Apis mellifera L. (Hymenoptera: Apidae), suffer simultaneously from multiple stress factors, raising concern that multiple stressors could be interacting to compound bee stress in an additive or synergistic fashion. We tested two null hypotheses: 1) Varroa destructor Anderson & Trueman (Acari: Varroidae) (=varroa) and Aethina tumida Murray (Coleoptera: Nitidulidae) do not interact such that the number of one affects the number or density of the other and 2) bee damage from one does not change in response to changing levels of the other. In a split-split plot design replicated in 2 yr and two states, experimental apiaries were established and each manipulated to achieve one of five average ± SE colony adult A. tumida populations: 0; 285 ± 6; 721 ± 5; 1,544 ± 14; or 3,175 ± 90. Within each apiary, the population of varroa mites in each colony was manipulated to achieve one of three average ± SE colony mite populations: 763 ± 121; 1,111 ± 155; or 1,856 ± 300. On a one-way basis, there was a predictable increase in measures of bee morbidity with increasing densities of each pest. Colony varroa mite levels decreased as apiary-wide A. tumida levels increased. In contrast, colony levels of the honey bee mite, Acarapis woodii (Rennie) (Acari: Tarsenemidiae), increased as colony varroa levels increased. Concerning measures of bee morbidity, varroa and A. tumida did not interact such that damage by one was affected by changing levels of the other. A treatment threshold established for varroa before the arrival of A. tumida has not changed during the years since A. tumida has become established in the region.

KEY WORDS Apis mellifera, varroa mite, Acarapis woodii, colony decline

There is evidence that managed honey bees, Apis mellifera L. (Hymenoptera: Apidae), are declining in much of North America and Europe (Biesmeijer et al. 2006, National Research Council 2007); and although viruses figure prominently in the list of suspected agents (Johnson et al. 2009), field surveys indicate that declining colonies suffer simultaneously from multiple stress factors (Cox-Foster et al. 2007, vanEngelsdorp et al. 2009), raising concern that multiple stressors could be interacting to compound bee stress in an additive or synergistic manner. At the microorganismal scale, an interaction has been shown between black queen cell virus and the microsporidian Nosema apis Zander (Dissociodiaphthalid: Nosematidae) (Bailey et al. 1983). The microsporidian enhances replication of the virus, and co-infected bees die at higher rates than singly infected bees. Interactions also occur between deformed wing virus (DWV) and the macroscopic parasitic bee mite Varroa destructor Anderson & Trueman (Acari: Varroidae) (=varroa), such that varroa parasitism is linked to high levels of DWV (Yang and Cox-Foster 2007). At the macroorganismal scale, there is cause for concern between varroa and Aethina tumida Murray (Coleoptera: Nitidulidae), a nest scavenger and natural associate of African A. mellifera introduced to the United States in the mid-1990s. Varroa is associated with a wide range of bee morbidities, including the vectoring or activating of viruses (Sammataro et al. 2000), and A. tumida is associated with reduced colony bee populations, brood area, and flight activity (Ellis et al. 2003b). The terminal result of unchecked adult A. tumida infestation is colony absconding or death (Ellis et al. 2003a).

Arthropod nest enemies such as varroa and A. tumida facilitate an examination of interacting stress factors on honey bees at the macroorganismal scale. Moreover, for each of these pests there are literature guidelines for colony densities that range from innocuous to damaging. For varroa, mite densities are considered nondamaging at levels <3-13 mites per 100 bees (Delaplane and Hood 1997, 1999; Strange and Sheppard 2001), whereas for A. tumida average adult numbers <400 do not significantly reduce colony bee

1 Department of Entomology, University of Georgia, Athens, GA 30602.
2 Corresponding author, e-mail: ksd@uga.edu.
3 Current affiliation: Department of Entomology and Nematology, University of Florida, Gainesville, FL 32611.
4 Department of Entomology, Soils, and Plant Sciences, Clemson University, Clemson, SC 29634.
populations, brood, flight activity, or honey yields in three-frame nucleus colonies (Ellis et al. 2003b). This knowledge is helpful in designing field experiments that bracket a range of realistic pest densities. In a field experiment replicated across 2 yr and two states, we tested two null hypotheses: 1) two honey bee pests do not interact such that the number or density of one affects the number or density of the other, and 2) bee damage from one does not change in response to changing levels of the other. The nest invaders V. destructor and A. tumida served as model honey bee pests. In a factorial treatment arrangement like this, rejection of null hypothesis 1 requires demonstrating a significant change in pest numbers in response to changing numbers of the other, and rejection of null hypothesis 2 requires demonstrating an interaction between the main effects varroa and A. tumida on measures of bee morbidity.

Materials and Methods

The experiment was a split-split plot design replicated in 2 yr (split 1: 2004, 2005) and two states (split 2: Georgia, South Carolina) (Fig. 1). Within each state, in June of each year 30 experimental colonies (five apiaries × six colonies each), each with one Langstroth hive body, a queen excluder, and one food super, were established with nearly equal amounts of bees, brood, and honey. Numbers of A. tumida adults were manipulated at the level of apiary because beetles are strong fliers and move easily between colonies. Numbers of varroa were manipulated at the level of colony within apiary because their drift rate is much lower.

Within each state, one of the apiaries was designated an A. tumida control apiary and received no inoculated beetles. Each of the remaining four apiaries was inoculated with different numbers of laboratory-reared adult A. tumida in June, August, and October. By December of both years, this resulted in apiaries with the following average ± SE sum of beetles added to each colony: 0; 285 ± 6; 721 ± 5; 1,544 ± 14; or 3,175 ± 90. In both years, the ground in front of hives was treated with permethrin (GardStar, Y-Tex Corp., Cody, WY) to kill wandering A. tumida larvae and limit local population increase. Within state, no apiary was nearer than 5 km to another known apiary. Although we cannot exclude the possibility of immigrating adult A. tumida, trap recovery of flying adults is known to decrease linearly within a range of 0–160 m from release site (Arbogast et al. 2009). Thus, we believe the actualized A. tumida levels in our apiaries were the product of our inoculating efforts and not A. tumida immigration or reproduction in colonies.

Within apiary, each colony was randomly assigned one of three varroa miticide treatments (two colonies per treatment) to approximate the range of colony varroa populations achieved by Delaplane and Hood.
Table 1. Effects of colony varroa treatment on dependent variables

<table>
<thead>
<tr>
<th>Variable</th>
<th>Miticide repeatedly<sup>a</sup></th>
<th>Miticide in Aug.<sup>a,b</sup></th>
<th>Miticide in Oct.<sup>a</sup></th>
</tr>
</thead>
<tbody>
<tr>
<td>Adult bee population</td>
<td>14,128 ± 434 (107)a</td>
<td>13,415 ± 517 (104)ab</td>
<td>12,323 ± 662 (92)b</td>
</tr>
<tr>
<td>Avg bee mass (mg)</td>
<td>1118 ± 23 (31)a</td>
<td>1110 ± 37 (33)b</td>
<td>1112 ± 22 (59)a</td>
</tr>
<tr>
<td>Total brood (cm<sup>2</sup>)</td>
<td>3,482 ± 310 (107)a</td>
<td>3,355 ± 355 (100)ab</td>
<td>3,195 ± 325 (91)a</td>
</tr>
<tr>
<td>Colony varroa mite population</td>
<td>763 ± 151 (120)b</td>
<td>1,111 ± 155 (130)b</td>
<td>1,658 ± 300 (130)a</td>
</tr>
<tr>
<td>Mites per 100 bees</td>
<td>5.4 ± 0.6 (120)b</td>
<td>10.1 ± 1.6 (120)b</td>
<td>24.7 ± 5.4 (120)a</td>
</tr>
<tr>
<td>Colony wt (kg)</td>
<td>3.7 ± 1.2 (34)b</td>
<td>3.7 ± 1.7 (33)b</td>
<td>3.1 ± 1.3 (38)b</td>
</tr>
<tr>
<td>% bees positive for A. woodi</td>
<td>0.7 ± 0.2 (34)b</td>
<td>1.3 ± 0.3 (33)b</td>
<td>2.7 ± 0.7 (29)a</td>
</tr>
</tbody>
</table>

^a Values are mean ± SE (n).
^b Now values with the same letter are not different (t-test on LSmeans; α = 0.05).

(1997, 1999): miticide treatment applied repeatedly, applied in August only, or in applied October only. For 2004, the repeatedly treated group received fluvalinate (ApiStar, Vita-Europe, Basingstone, Hants, United Kingdom), whereas for 2005 we switched to thymol-based miticides (Api-Life VAR [Chemicals LAIF, Vignola, Italy] or Apiguard [Vita-Europe]) over concerns of varroa resistance to Apistan. These manipulations exploit the principle that mite populations can be expected to grow as miticide applications are delayed (Delaplane and Hood 1997). The resulting average ± SE colony mite populations were 763 ± 121 for the repeatedly treated group; 1,111 ± 155 for the August-treated group; and 1,856 ± 300 for the October group (see methods below).

In August, October, and December of both years, we sampled each colony to determine colony adult bee population, total brood (cm²), colony varroa mite population, and mites per 100 adult bees. Adult bee population and the brood area measures were derived by summing proportions of whole deep frames covered by bees or brood (after Skinner et al. 2001), converting frames of adult bees to bee populations with the regression model of Burgett and Burktam (1985), and converting frames of brood to square centimeters by the observation that one deep Langstroth comb (both sides) = 1.75 cm². Realized colony varroa populations were derived from 24-h mite counts with the linear regression model of Delaplane and Hood (1997); levels were determined immediately before scheduled miticide treatments were applied. From colony populations of bees and mites we derived the number of mites per 100 bees. Realized A. tumida populations by colony were not determined because we have not been successful at developing a reliable field sampling technique (contra Schäfer et al. 2008). For December only, colonies were weighed (kilograms) and adult bees from each sampled to determine average bee mass (milligrams); and, via dissection, the percentage of bees positive for the parasitic tracheal honey bee mite, Acarapis woodi (Rennie) (Acarid: Tarsonomidae). Average bee mass was determined by collecting and weighing live bees in preweighed jars.

The combined August, October, and December data for both years were analyzed with mixed models (Proc Mixed, SAS 2002–2003) recognizing colony varroa treatment (V), apiary A. tumida level (B), and the interaction of V × B as fixed effects and year (Y), state (S), Y × S, and Y × B as random effects. Y × S and Y × B were later dropped from analyses because they did not explain any variation. Tukey's mean separation test was performed on least square means, but non-adjusted means are reported in tables. Differences were accepted at the α ≤ 0.05 level.

Results

A significant effect of varroa treatment was detected for adult bee population (F = 5.6; df = 2, 286; P = 0.004), colony varroa mite populations (F = 7.5; df = 2, 343; P = 0.0006), mites per 100 bees (F = 9.8; df = 2, 343; P = 0.0001), colony weight (F = 3.9; df = 2, 78; P = 0.02), and percentage bees positive for A. woodi (F = 5.7; df = 2, 78; P = 0.005). Colonies in which varroa treatment had been delayed until October had lower bee populations than the continuously treated group and higher colony mite populations, higher mites per 100 bees, lower colony weights, and higher levels of A. woodi than both other groups (Table 1). In spite of the fact that thymol was only used in year 2 and has toxic properties against A. woodi (Calderone et al. 1997), the percentage bees positive for A. woodi was unaffected by year (F = 11.2; df = 1, 2; P = 0.06) or the interaction of year with varroa treatment (F = 2.4; df = 2, 69; P = 0.1).

A significant effect of apiary A. tumida level was detected for average colony varroa mite populations (F = 3.2; df = 4, 343; P = 0.01) and colony weight (F = 3.8; df = 4, 78; P = 0.007). Colonies that had received ≥721 beetles had significantly fewer mites than colonies with 285 beetles. Colonies which had been inoculated with zero beetles had comparatively highest colony weights, and there was a trend for significant and stepwise decline in colony weight as beetle numbers increased (Table 2). In no case was an interaction detected between colony varroa treatment and apiary A. tumida level (0.09 < P < 1.1; df = 8, 78–343; 0.4 < P < 1.0).

Discussion

With each of our model arthropod nest enemies varroa and A. tumida, we demonstrated increasing honey bee morbidity with increasing levels of nest invader. For varroa, this was significantly true of adult bee population and percentage bees positive for A. woodi (Table 1), and for A. tumida this was...
Table 2. Effects of apiary A. tumida level on dependent variables

<table>
<thead>
<tr>
<th>Beetles added to colonies</th>
<th>0</th>
<th>295 ± 6</th>
<th>721 ± 5</th>
<th>1,544 ± 14</th>
<th>3,175 ± 90</th>
</tr>
</thead>
<tbody>
<tr>
<td>Adult bee pop*ab</td>
<td>14,535 ± 644 (68)a</td>
<td>12,314 ± 533 (65)a</td>
<td>13,517 ± 724 (65)a</td>
<td>12,573 ± 681 (59)a</td>
<td>13,642 ± 939 (46)a</td>
</tr>
<tr>
<td>Avg bee mass (mg)*a</td>
<td>118.6 ± 3.9 (28)</td>
<td>120.9 ± 3.2 (31)</td>
<td>118.9 ± 4.8 (30)</td>
<td>109.6 ± 1.8 (19)a</td>
<td>111.4 ± 3.6 (13)a</td>
</tr>
<tr>
<td>Total brood (cm4)*b</td>
<td>3,164 ± 349 (66)</td>
<td>3,241 ± 282 (65)</td>
<td>3,589 ± 433 (63)</td>
<td>3,069 ± 399 (58)a</td>
<td>3,928 ± 518 (45)a</td>
</tr>
<tr>
<td>Colony varroa mite pop*ab</td>
<td>1,307 ± 263 (72)ab</td>
<td>1,920 ± 383 (73)a</td>
<td>1,195 ± 207 (72)b</td>
<td>1,194 ± 206 (73)b</td>
<td>660 ± 197 (72)b</td>
</tr>
<tr>
<td>Mites per 100 bees*ab</td>
<td>13.7 ± 5.5 (72)</td>
<td>23.4 ± 6.9 (72)</td>
<td>12.6 ± 2.8 (72)a</td>
<td>10.3 ± 1.8 (72)a</td>
<td>6.9 ± 2.5 (72)a</td>
</tr>
<tr>
<td>Colony wt (kg)*a</td>
<td>30.3 ± 2.3 (28)</td>
<td>37.8 ± 1.9 (31)</td>
<td>35.4 ± 1.8 (30)bc</td>
<td>34.3 ± 1.1 (19)bc</td>
<td>31.1 ± 1.5 (13)bc</td>
</tr>
<tr>
<td>% bees positive for A. woodi*ab</td>
<td>1.8 ± 0.6 (22)a</td>
<td>1.1 ± 0.5 (21)a</td>
<td>1.7 ± 0.6 (21)a</td>
<td>1.1 ± 0.6 (19)a</td>
<td>1.9 ± 1.0 (13)a</td>
</tr>
</tbody>
</table>

*Values are mean ± SE (n). Please note table is oriented to read left to right.

Another feature of the present data is an absence of interactions between the categorical main effects varroa and A. tumida on measures of bee morbidity. This is apparent in the absence of interactions in our mixed model between the two main effects, varroa and A. tumida. Therefore, we failed to reject null hypothesis 2 and conclude that varroa and A. tumida do not interact such that bee damage from one changes in response to changing levels of the other.

Because the present design repeats our earlier methods that established an August treatment threshold for varroa before A. tumida were found in our apiaries (Delaplane and Hood 1997, 1999; Hood 2004), the present data provide an opportunity to see whether the varroa threshold has changed now that A. tumida are generally established in the region. Repeating our earlier analyses, we examined colony metrics for December data only and found that colonies in which varroa treatment had been delayed until August performed as well as colonies which had been treated continuously with miticide and performed better than colonies in which miticide treatment had been delayed until October. This repeats our previous finding that varroa densities encountered in August were below an irrecoverable level. In the present experiment, that August varroa density was 20 ± 12 mites per 100 bees, not lower, as one would expect if A. tumida had proven an additional hardship on bees; but it was actually higher than the 13 mites per 100 bees level shown previously (Delaplane and Hood 1999). Thus, we conclude that the varroa threshold has not changed since the arrival of A. tumida in the southeastern United States. This is consistent with our present results showing no interaction between varroa and A. tumida in the short term represented by our experiment.

In summary, we found that colony varroa levels decreased as apiary-wide A. tumida levels increased; this suggests that at least at the macroscopic scale organismal defense reactions against one nest invader may provide collateral benefit toward another. In contrast, colony levels of A. woodi increased as colony levels of V. destructor increased. Concerning measures of bee morbidity, varroa and A. tumida did not interact such that damage by one was affected by changing levels of the other. A treatment threshold established.
for varroa before the arrival of *A. tumida* has not changed during the years since *A. tumida* has become established in the region. Work like this is important to the long-term project of understanding the interactions and dynamics of the multiple stressors contributing to honey bee decline.

Acknowledgments

Technical assistance was provided by Jennifer Berry, Amanda Ellis, Brett Nolan, John Chris Smith, and Travis Wright. Statistical assistance was provided by Jerry Davis (University of Georgia) and Larry Grimes (Clemson University).

References Cited

Received 16 November 2009; accepted 29 April 2010.